

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.




            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  

    
      
          
            
  ## Agents
* PPO

## Environments
* SingleAssetEnvironment
* MultiAssetEnvironment
* OrderExecutionEnvironment

## Reward Schemas
#### Trading:
* AssetsPriceChangeRewardSchema

#### Order Execution
* DecisionMakingRewardSchema
* SinDecisionMakingRewardSchema
* ActionMagnitudeRewardSchema

## Action Schemas
* DiscreteActionScheme
* ContinuousFloatActionSchema
* ContinuousIntegerActionSchema



            

          

      

      

    

  

    
      
          
            
  # Main Config Structure
We use Google Protobuf to model the config system.
Used examples can be seen at: yachtconfigconfigs
This is the big picture of the config:
```
input: {


…




}
environment: {


…




}
agent: {


…




}
train: {


…




}
meta: {


…





}

## Input Config
```
input: {


market: ‘Yahoo’  # Data Source
market_mixins: [‘TargetPriceMixin’, ‘FracDiffMixin’]  # Mixin that preprocesses the data before is cached.
dataset: ‘DayFrequencyDataset’  # The dataset that models a single asset.


# There is an aggregator dataset that is used for multiple assets.




num_assets_per_dataset: 1  # How many assets there will be in a dataset.
scaler: ‘MinMaxScaler’  # The scaler applied on loading.
scale_on_interval: ‘1d’  # On what interval to find the scaling paramters.
tickers: [‘NASDAQ100’, ‘S&P500’, ‘DOW30’]   # On what tickers to train.
attached_tickers: [‘QQQ’, ‘SPY’]  # Extra tickers that will be attached to EVERY dataset.
fine_tune_tickers: [‘NASDAQ100’]  # Tickers to fine-tune on.
intervals: [‘1d’]  # What intervals/frequencies to use.
features: [‘CloseFracDiff’, ‘OpenFracDiff’, ‘HighFracDiff’, ‘LowFracDiff’, ‘VolumeFracDiff’]  # The features to use while training.
decision_price_feature: ‘TP’  # On what features to compute all the rewards & metrics.
take_action_at: ‘next’  # When to take the action. We support only: current & next.
technical_indicators: [‘macdFracDiff’, ‘rsi_30’]  # Technical indicators to compute & use.
start: ‘1/8/2016’  # The start of the whole dataset.
end: ‘15/10/2021’  # The end of the whole dataset.
period_length: ‘1M’  # The length of an episode.
window_size: 5  # Number of lagged observations to look on.
render_periods: [  # Render subsets. Rendering is an expensive computation. If it is empty no rendering will be done.


{start: ‘1/1/2018’, end: ‘1/7/2019’},
{start: ‘15/12/2020’, end: ‘15/8/2021’}




]
render_tickers: [‘AAPL’]  # Render tickers. Rendering is an expensive computation. If is it empty no rendering will be done.


include_weekends: false  # If the assets are traded during workdays or not.




validation_split_ratio: 0.2  # How much of the data to add to train.
backtest_split_ratio: 0.1  # How much of the data to add to testing.
embargo_ratio: 0.025  # Embargo ratio between splits.
backtest: {


run: false  # Flag to backtest on the testing set or not.
deterministic: true  # Run the backtesting in a deterministic way or not.
tickers: [‘NASDAQ100’]  # Backtesting/Validation tickers.




}






}

## Environment Config
```
environment: {


name: ‘OrderExecutionEnvironment-v0’  # What environment to use.
n_envs: 6  # The number of environments.
envs_on_different_processes: false  # Flag to run environments on differenct processes.
buy_commission: 0.00  # Buy commission.
sell_commission: 0.00  # Sell comission.
initial_cash_position: 5000  # The cash position that the agent is starting with.
reward_schemas: [  # List of reward schemas.
{


name: ‘DecisionMakingRewardSchema’,
reward_scaling: 1.




},
{


name: ‘ActionMagnitudeRewardSchema’,
reward_scaling: 0.025




global_reward_scaling: 1.  # Reward scaling that is applied after all the rewards are computed.
action_schema: ‘DiscreteActionScheme’  # Action schema.
possibilities: [0, 0.25, 0.5, 0.75, 1]  # Action schema possibilities ( if it is discrete)
action_scaling_factor: 1  # Action schema scaling factor ( if it continous)






}

## Agent Config
A lot of parameters coincide with the ones from stable-baselines3. Refer to their
[documentation](https://stable-baselines3.readthedocs.io/en/master/) for a more detailed reading.
```
agent: {


name: ‘SupervisedPPO’  # The agent that will be used.
is_classic_method: false  # Flag if it is a classic method or not.
is_teacher: false  # Flag if it is used as a teacher or not.
is_student: false  # Flag if it is used as a student or not.
verbose: true
policy: {


name: ‘MlpPolicy’  # The name of the policy that is used.
activation_fn: ‘Tanh’,
feature_extractor: {


name: ‘DayRecurrentFeatureExtractor’  # The name of the feature extractor that the policy uses.
features_dim: [64,64,128]
drop_out_p: 0.,
rnn_layer_type: ‘GRU’




}
net_arch: {  # Network that will be called on the outputs of the FeatureExtractor.


shared: [64, 64]
vf: [32]
pi: [32]




}




}






}

## Training Config
A lot of parameters coincide with the ones from stable-baselines3. Refer to their
[documentation](https://stable-baselines3.readthedocs.io/en/master/) for a more detailed reading.
```
train: {


trainer_name: ‘Trainer’  # The trainer to be used.
total_timesteps: 3000000
fine_tune_total_timesteps: -1  # Fine tune number of timesteps. If it is -1 fine tuning is stopped.
collecting_n_steps: 2048
learning_rate: 0.0002
batch_size: 2048
n_epochs: 5
gamma: 1.
gae_lambda: 1.
clip_range: 0.3
vf_clip_range: 0.3
entropy_coefficient: 0.15
vf_coefficient: 1.
max_grad_norm: 100
use_sde: false
sde_sample_freq: -1
learning_rate_scheduler: ‘ConstantSchedule’
supervised_coef: 5.  # Coeficient used by the supervised head of the agent.






}

##  Meta Config
```
meta: {


log_frequency_steps: 5000  # Frequency to log state during training.
metrics_to_log: [‘PA’, ‘GLR’, ‘cash_used_on_last_tick’]  # What metrics to log.
metrics_to_save_best_on: [‘PA’, ‘GLR’]  # On what metrics to save the best agent.
metrics_to_load_best_on: [‘PA’, ‘GLR’]  # On what metrics to resume/backtest the agent.
plateau_max_n_steps: -1  # Number of validation steps until the training is stopped if the metrics did not improve.


# If it is -1 the logic is stopped.




device: ‘gpu’  # Either gpu or cpu
experiment_tracker: ‘wandb’  # Experiment tracker to be used. If it is “’’” it is stopped.
project_entity: ‘yacht’  # Experiment tracker unique entity. If it is “’’” it will be routed to your own name.






}




            

          

      

      

    

  

    
      
          
            
  # Description
We use the pyfolio-reloaded package to compute standard metrics like:
* sharp ratio
* annual return
* alpha
* beta

For a more detailed explanation refer to their [page](https://pypi.org/project/pyfolio-reloaded/).
They support a lot of metrics.
<br> The custom metrics implemented in this repository are the following:
* PA = Price Advantage
* GLR = Gain Loss Ratio
* AD = Action Distance
* ADS = Action Distance from the Start
* ADE = Action Distance from the End
* cash_used_on_last_tick = The cash that was used at the end of an episode
* T = Tactics, which is just T = ADS / cash_used_on_last_tick
* num_actions = The number of the actions the agent has taken

NOTE: PA & GLR are used for the Order Execution Task. For a more detailed explanation
please refer to the following paper: [Universal Trading for Order Execution with Oracle Policy Distillation](https://arxiv.org/abs/2103.10860).
I also wrote a summary of the paper on [Medium](https://medium.com/mlearning-ai/universal-trading-for-order-execution-with-reinforcement-learning-a62d400f2f1a).



            

          

      

      

    

  

    
      
          
            
  # Description
For now our codebase is inspired by the paper [Universal Trading for Order Execution with Oracle Policy Distillation](https://arxiv.org/abs/2103.10860).
If you are interested to see the main concepts I wrote a summary on [Medium](https://medium.com/mlearning-ai/universal-trading-for-order-execution-with-reinforcement-learning-a62d400f2f1a).
We made a few changes to make it more generic & robust:
* The setup can we used on any kind of asset timeseries.
* The actions are taken only at one time step based on some lagged observations.
* You can use it at any timescale: 1 year, 1 month, 1 day
* We have improved the preprocessing method so the data is stationary.
* We have added a supervised head to help learning.
* We have added as input reference indexes, like S&P500 & Nasdaq100 to help the agent to find the trend.
* We have improved the model to help the agent to pick features from different variables.

A detailed explanation of those improvements can be found at the following [paper]().
<br>Here are some examples of how the agent is performing:
![graph2](../images/graph1_opds.png)
![graph3](../images/graph2_opds.png)
![graph4](../images/graph3_opds.png)

This is how the agent is taking the actions:
![actions](../images/window_logic.png)



            

          

      

      

    

  

    
      
          
            
  # Description
In our case the teacher-student setup is used as in [Universal Trading for Order Execution with Oracle Policy Distillation](https://arxiv.org/abs/2103.10860).
It is used as an oracle that has access to all the epoch data. In this way we can generate ideal actions that can be further
used as GT for a student agent. This will help & stabilize learning.

# Usage
Train teacher:
`shell
python main.py train --config-file order_execution/all/single_asset_all_universal_teacher.config.txt --storage_path ./storage/universal_teacher --market-storage-dir ./storage
`
Export the actions:
`shell
export_actions --config-file-name order_execution/all/single_asset_all_universal_teacher_export.config.txt --storage-dir ./storage/universal_teacher --market-storage-dir ./storage
`
Train the student with the exported actions:
`shell
python main.py train --config-file order_execution/all/single_asset_all_universal_distillation.config.txt --storage_path ./storage/universal_distillation --market-storage-dir ./storage
`



            

          

      

      

    

  

    
      
          
            
  # Description
On this topic we have implemented only some general components.
You can use one of the following components in any combination you like:

#### Environments
* SingleAssetEnvironment
* MultiAssetEnvironment

#### Reward Schemas
* AssetsPriceChangeRewardSchema

#### Action Schemas
* DiscreteActionScheme
* ContinuousFloatActionSchema
* ContinuousIntegerActionSchema



            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





